55 research outputs found

    A VLSI-oriented and power-efficient approach for dynamic texture recognition applied to smoke detection

    Get PDF
    The recognition of dynamic textures is fundamental in processing image sequences as they are very common in natural scenes. The computation of the optic flow is the most popular method to detect, segment and analyse dynamic textures. For weak dynamic textures, this method is specially adequate. However, for strong dynamic textures, it implies heavy computational load and therefore an important energy consumption. In this paper, we propose a novel approach intented to be implemented by very low-power integrated vision devices. It is based on a simple and flexible computation at the focal plane implemented by power-efficient hardware. The first stages of the processing are dedicated to remove redundant spatial information in order to obtain a simplified representation of the original scene. This simplified representation can be used by subsequent digital processing stages to finally decide about the presence and evolution of a certain dynamic texture in the scene. As an application of the proposed approach, we present the preliminary results of smoke detection for the development of a forest fire detection system based on a wireless vision sensor network.Junta de Andalucía (CICE) 2006-TIC-235

    Experimental Evidence of Power Efficiency due to Architecture in Cellular Processor Array Chips

    Get PDF
    Speeding up algorithm execution can be achieved by increasing the number of processing cores working in parallel. Of course, this speedup is limited by the degree to which the algorithm can be parallelized. Equivalently, by lowering the operating frequency of the elementary processors, the algorithm can be realized in the same amount of time but with measurable power savings. An additional result of parallelization is that using a larger number of processors results in a more efficient implementation in terms of GOPS/W. We have found experimental evidence for this in the study of massively parallel array processors, mainly dedicated to image processing. Their distributed architecture reduces the energy overhead dedicated to data handling, thus resulting in a power efficient implementationMinisterio de Economía y Competitividad TEC2015-66878-C3-1-RCentro para el Desarrollo Tecnológico e Industrial IPC- 20111009Junta de Andalucía TIC 2338-2013Office of Naval Research (USA) N00014141035

    Experimental Evidence of Power Efficiency due to Architecture in Cellular Processor Array Chips

    Get PDF
    Speeding up algorithm execution can be achieved by increasing the number of processing cores working in parallel. Of course, this speedup is limited by the degree to which the algorithm can be parallelized. Equivalently, by lowering the operating frequency of the elementary processors, the algorithm can be realized in the same amount of time but with measurable power savings. An additional result of parallelization is that using a larger number of processors results in a more efficient implementation in terms of GOPS/W. We have found experimental evidence for this in the study of massively parallel array processors, mainly dedicated to image processing. Their distributed architecture reduces the energy overhead dedicated to data handling, thus resulting in a power efficient implementationMinisterio de Economía y Competitividad TEC2015-66878-C3-1-RCentro para el Desarrollo Tecnológico e Industrial IPC- 20111009Junta de Andalucía TIC 2338-2013Office of Naval Research (USA) N00014141035

    All-MOS implementation of RC networks for time-controlled Gaussian spatial filtering

    Get PDF
    This paper addresses the design and VLSI implementation of MOS-based RC networks capable of performing time-controlled Gaussian filtering. In these networks, all the resistors are substituted one by one by a single MOS transistor biased in the ohmic region. The design of this elementary transistor is carefully realized according to the value of the ideal resistor to be emulated. For a prescribed signal range, the MOSFET in triode region delivers an interval of instantaneous resistance values. We demonstrate that, for the elementary 2-node network, establishing the design equation at a particular point within this interval guarantees minimum error. This equation is then corroborated for networks of arbitrary size by analyzing them from a stochastic point of view. Following the design methodology proposed, the error committed by an MOS-based grid when compared with its equivalent ideal RC network is, despite the intrinsic nonlinearities of the transistors, below 1% even under mismatch conditions of 10%. In terms of image processing, this error hardly affects the outcome, which is perceptually equivalent to that of the ideal network. These results, extracted from simulation, are verified in a prototype vision chip with QCIF resolution manufactured in the AMS 0.35µm CMOS-OPTO process. This prototype incorporates a focal-plane MOS-based RC network that performs fully programmable Gaussian filtering.Junta de Andalucía 2006-TIC-2352Ministerio de Ciencia e Innovación TEC 2009-1181

    Low-power focal-plane dynamic texture segmentation based on programmable image binning and diffusion hardware

    Get PDF
    Stand-alone applications of vision are severely constrained by their limited power budget. This is one of the main reasons why vision has not yet been widely incorporated into wireless sensor networks. For them, image processing should be suscribed to the sensor node in order to reduce network traffic and its associated power consumption. In this scenario, operating the conventional acquisition-digitization-processing chain is unfeasible under tight power limitations. A bio-inspired scheme can be followed to meet the timing requirements while maintaining a low power consumption. In our approach, part of the low-level image processing is conveyed to the focal-plane thus speeding up system operation. Moreover, if a moderate accuracy is permissible, signal processing is realized in the analog domain, resulting in a highly efficient implementation. In this paper we propose a circuit to realize dynamic texture segmentation based on focal-plane spatial bandpass filtering of image subdivisions. By the appropriate binning, we introduce some constrains into the spatial extent of the targeted texture. By running time-controlled linear diffusion within each bin, a specific band of spatial frequencies can be highlighted. Measuring the average energy of the components in that band at each image bin the presence of a targeted texture can be detected and quantified. The resulting low-resolution representation of the scene can be then employed to track the texture along an image flow. An application specific chip, based on this analysis, is being developed for natural spaces monitoring by means of a network of low-power vision systems.Junta de Andalucía 2006-TIC-235Ministerio de Economía, Industria y Competitividad TEC 2006-1572

    Optimum Selection of DNN Model and Framework for Edge Inference

    Get PDF
    This paper describes a methodology to select the optimum combination of deep neuralnetwork and software framework for visual inference on embedded systems. As a first step, benchmarkingis required. In particular, we have benchmarked six popular network models running on four deep learningframeworks implemented on a low-cost embedded platform. Three key performance metrics have beenmeasured and compared with the resulting 24 combinations: accuracy, throughput, and power consumption.Then, application-level specifications come into play. We propose a figure of merit enabling the evaluationof each network/framework pair in terms of relative importance of the aforementioned metrics for a targetedapplication. We prove through numerical analysis and meaningful graphical representations that only areduced subset of the combinations must actually be considered for real deployment. Our approach can beextended to other networks, frameworks, and performance parameters, thus supporting system-level designdecisions in the ever-changing ecosystem of embedded deep learning technology.Ministerio de Economía y Competitividad (TEC2015-66878-C3-1-R)Junta de Andalucía (TIC 2338-2013)European Union Horizon 2020 (Grant 765866

    Early forest fire detection by vision-enabled wireless sensor networks

    Get PDF
    Wireless sensor networks constitute a powerful technology particularly suitable for environmental monitoring. With regard to wildfires, they enable low-cost fine-grained surveillance of hazardous locations like wildland-urban interfaces. This paper presents work developed during the last 4 years targeting a vision-enabled wireless sensor network node for the reliable, early on-site detection of forest fires. The tasks carried out ranged from devising a robust vision algorithm for smoke detection to the design and physical implementation of a power-efficient smart imager tailored to the characteristics of such an algorithm. By integrating this smart imager with a commercial wireless platform, we endowed the resulting system with vision capabilities and radio communication. Numerous tests were arranged in different natural scenarios in order to progressively tune all the parameters involved in the autonomous operation of this prototype node. The last test carried out, involving the prescribed burning of a 95 x 20-m shrub plot, confirmed the high degree of reliability of our approach in terms of both successful early detection and a very low false-alarm rate. Journal compilationMinisterio de Ciencia e Innovación TEC2009-11812, IPT-2011-1625-430000Office of Naval Research (USA) N000141110312Centro para el Desarrollo Tecnológico e Industrial IPC-2011100

    Concurrent focal-plane generation of compressed samples fromtime-encoded pixel values

    Get PDF
    Compressive sampling allows wrapping the relevant content of an image in a reduced set of data. It exploits the sparsity of natural images. This principle can be employed to deliver images over a network under a restricted data rate and still receive enough meaningful information. An efficient implementation of this principle lies in the generation of the compressed samples right at the imager. Otherwise, i. e. digitizing the complete image and then composing the compressed samples in the digital plane, the required memory and processing resources can seriously compromise the budget of an autonomous camera node. In this paper we present the design of a pixel architecture that encodes light intensity into time, followed by a global strategy to pseudo-randomly combine pixel values and generate, on-chip and on-line, the compressed samples.Ministerio de Economía y Competitividad TEC 2015-66878-C3-1-RJunta de Andalucía TIC 2338-2013Office of Naval Research (USA) N000141410355CONACYT (Mexico) MZO-2017-29106

    Impact of Thermal Throttling on Long-Term Visual Inference in a CPU-based Edge Device

    Get PDF
    Many application scenarios of edge visual inference, e.g., robotics or environmental monitoring, eventually require long periods of continuous operation. In such periods, the processor temperature plays a critical role to keep a prescribed frame rate. Particularly, the heavy computational load of convolutional neural networks (CNNs) may lead to thermal throttling and hence performance degradation in few seconds. In this paper, we report and analyze the long-term performance of 80 different cases resulting from running 5 CNN models on 4 software frameworks and 2 operating systems without and with active cooling. This comprehensive study was conducted on a low-cost edge platform, namely Raspberry Pi 4B (RPi4B), under stable indoor conditions. The results show that hysteresis-based active cooling prevented thermal throttling in all cases, thereby improving the throughput up to approximately 90% versus no cooling. Interestingly, the range of fan usage during active cooling varied from 33% to 65%. Given the impact of the fan on the power consumption of the system as a whole, these results stress the importance of a suitable selection of CNN model and software components. To assess the performance in outdoor applications, we integrated an external temperature sensor with the RPi4B and conducted a set of experiments with no active cooling in a wide interval of ambient temperature, ranging from 22 {\deg}C to 36 {\deg}C. Variations up to 27.7% were measured with respect to the maximum throughput achieved in that interval. This demonstrates that ambient temperature is a critical parameter in case active cooling cannot be applied.Comment: 14 pages, 11 figure

    Real-time remote reporting of motion analysis with Wi-Flip

    Get PDF
    This paper describes a real-time application programmed into Wi-FLIP, a wireless smart camera resulting from the integration of FLIP-Q, a prototype mixed-signal focal-plane array processor, and Imote2, a commercial WSN platform. The application consists in scanning the whole scene by sequentially analyzing small regions. Within each region, motion is detected by background subtraction. Subsequently, information related to that motion - intensity and location - is radio-propagated in order to remotely account for it. By aggregating this information along time, a motion map of the scene is built. This map permits to visualize the different activity patterns taking place. It also provides an elaborated representation of the scene for further remote analysis, preventing raw images from being transmitted. In particular, the scene inspected in this demo corresponds to vehicular traffic in a motorway. The remote representation progressively built enables the assessment of the traffic density.Ministerio de Ciencia e Innovación TEC2009-11812, IPT-2011-1625-430000Office of Naval Research (USA) N000141110312Centro para el Desarrollo Industrial y Tecnológico IPC-2011100
    corecore